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Outline of Talk

1. Rare Event Simulation for Markov-dependent

Sums: Review

2. Computation in the Presence of Continuous State

Space

3. Computing Exit Time Distributions
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Rare Event Simulation for Markov-

dependent Sums

� Setting:

◮ X = (Xn : n ≥ 0) finite state S-valued

irreducible Markov chain with unique

stationary distribution π

◮ f : S → R with πf = 0

◮ Sn =
∑n−1

i=0 f(Xi)

� Goal:

Compute P (Sn > nǫ) for n large (with ǫ > 0)
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Solution

1. Compute solution to eigenvalue problem

K(θ)h(θ) = λ(θ)h(θ)

where K(θ, x, y) = exp(θf(x))P (x, y)

2. Set ψ(θ) = log λ(θ). Find the root θ∗ of the equation

d

dθ
ψ(θ∗) = ǫ

RESIM Conference, Rennes



(continued)

3. Simulate X under the transition dynamics

associated with the one-step transition matrix

exp(θ∗f(x) − ψ(θ∗))P (x, y)
h(θ∗, y)

h(θ∗, x)

4. Set W = I(Sn > nǫ) exp(−θ∗Sn + nψ(θ∗))
h(θ∗, X0)

h(θ∗, Xn)

5. Generate p iid copies W1, . . . ,Wp of the rv W and

return

W p =
1

p

p∑

i=1

Wi
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This algorithm is logarithmically efficient, in the sense

that the computational effort required to compute

P (Sn > nǫ) to a given relative precision increases

“gracefully” with n (e.g. increases polynomially in n)
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Difficulties

� How to compute solutions to the eigenvalue

problem when |S| is large?

� How to sample transitions from

exp(θ∗f(x) − ψ(θ∗))P (x, y)
h(θ∗, y)

h(θ∗, x)
?
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A large measure of why we do Monte Carlo is so as to

address numerical computation for large state space

chains (or to deal with continuous state space chains,

without resort to discretization)
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One Possible Approach

� Estimate ψ(θ), θ∗, and the eigenfunction h(θ∗)

numerically (somehow)

� Simulate X under the estimated transition kernel

(somehow)

This looks difficult to execute in practice...
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Idea

Use regeneration.

Specifically, note that the likelihood ratio over a

regenerative z-cycle equals

exp(θSτ(z)−τ(z)ψ(θ))
h(θ,Xτ(z))

h(θ,X0)
= exp(θSτ(z)−τ(z)ψ(θ))

where τ(z) = inf{n ≥ 1 : Xn = z}.

No eigenfunction!
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Furthermore, the root ψ(θ) can be characterized as the

root of the equation

E exp(θSτ(z) − τ(z)ψ(θ)) = 1

so

P̃θ(·) , EI(·) exp(θSτ(z) − τ(z)ψ(θ))

induces a probability measure on the cycle path-space

associated with the regenerative process
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Let 0 = T (0) < T (1) < T (2) < . . . be the regeneration

times at which X returns to z. Put

N(n) = max{j ≥ 0 : T (j) ≤ n}

and note that N(n) + 1 ≥ n is a stopping time adapted

to X . So,

P (Sn > nǫ) = ẼθI(Sn > nǫ) exp(−θST (N(n)+1)+T (N(n)+1)ψ(θ))
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Finally, the root θ∗ can be defined in terms of

regenerative quantities:

ESτ(z) exp(θ∗Sτ(z) − τ(z)ψ(θ∗))

Eτ(z) exp(θ∗Sτ(z) − τ(z)ψ(θ∗))
= ǫ

i.e.
E∗

θSτ(z)

E∗

θτ(z)
= ǫ
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How do we take advantage of these insights?

1. Generate r iid z-cycles of X (with no importance

sampling), yielding copies (Y1, τ1), . . . , (Yr, τr) of the

rv (Y, τ), where Y = Sτ(z), τ = τ(z)

2. Compute

mr(θ, λ) =
1

r

r∑

i=1

exp(θYi − λτi)
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3. Compute ψr(θ) as the root of

mr(θ, ψr(θ)) = 1

4. Find the root θ∗r given by

d

dθ
ψr(θ

∗

r) = ǫ
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If we stopped here, we could use:

exp(n(−θ∗rǫ+ ψr(θ
∗

r))

as a logarithmically accurate estimator of P (Sn > nx),

in the sense that

1

n
logP (Sn > nǫ) − (−θ∗rǫ+ ψr(θ

∗

r)) → 0

as r and n tend to ∞
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To get an estimator for P (Sn > nǫ) itself, we need to do

additional bootstrap-type sampling:

5. Sample cycle i from collection (Y1, τ1), . . . , (Yr, τr)

with probability equal to

1

r
exp(θ∗rYi − ψr(θ

∗

r)τi)

and call it (Ỹ1, τ̃1). Continue sampling such cycles

independently until the total length of the sampled

cycles (Ỹ1, τ̃1), . . . , (Ỹ eN(n)+1, τ̃ eN(n)+1) exceeds n.

RESIM Conference, Rennes



6. Let S̃n be the sum of the first n f(Xj)’s associated

with the above bootstrapped sequence of cycles,

and put

W = I(S̃n > nǫ) exp




eN(n)+1∑

i=1

(−θ∗r Ỹi + ψr(θ
∗

r)τ̃i)




7. Repeat steps 5 and 6 m independent times, yielding

W1, . . . ,Wm, and returning

Wm =
1

m

m∑

i=1

Wi
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Given a computational budget c≫ n2, choose:

r of order c

m =
c

n2

This algorithm is logarithmically efficient, in the sense

that the computational effort required to compute

P (Sn > nǫ) to a given relative precision increases

“gracefully” with n (e.g. increases polynomially in n)

RESIM Conference, Rennes



Extension to Continuous State Space

Assume the Markov chain X = (Xn : n ≥ 0) is a

positive Harris recurrent Markov chain with

P (x,dy) ≥ pφ(dy)

for x ∈ K, y ∈ S. Construct regenerations via the

“splitting method”:

P (x,dy) = pφ(dy) + (1 − p)Q(x,dy)

i.e. For x ∈ K, chain X regenerates whenever X

distributes itself according to φ.
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Computing Exit Time Distributions

� Setting:

◮ X = (Xn : n ≥ 0) finite state S-valued

irreducible Markov chain

◮ A a given subset of S

◮ T = inf{n ≥ 0 : Xn ∈ A}

� Goal:

Compute P (T > n) for n large
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Here, the eigenvalue problem takes the form:

Bh = λh

where

B = (P (x, y) : x, y ∈ Ac)

and the ”ideal zero-variance transition dynamics” are

provided by K, where

K(x, y) = B(x, y)
h(y)

λh(x)
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The complication here arises as a consequence of the

fact that on the time scale of regenerations:

� the first N(n) completed cycles (effectively

generated under K) forbid visits to A

� the final cycle in progress at time n forbids visits to

A up to time n but permits visits to A after time n

This difficulty can be overcome...

Leads to a logarithmically efficient estimator for

P (T > n)
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Conclusions

We have shown that regeneration (and associated

path-sampling at the cycle level rather than at the level

of individual steps) can offer a means of numerically

computing large deviations for:

Markov-additive sums

exit time distributions

even in the presence of continuous state space
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n mean var log ratio

40 1.51E-15 4.54E-28 0.922361642

60 2.63E-21 1.60E-39 0.942553142

80 8.32E-30 2.04E-56 0.957551067

100 3.72E-37 4.67E-71 0.965306347

150 4.34E-56 6.64E-109 0.976986079

200 1.14E-76 5.50E-150 0.982691846

Table 1: P (Sn ≥ nǫ), where Sn =
∑n

i=1Xn, Xn+1 = ρXn +

Zn+1, ρ = 0.5, Zn’s are iid N(0, 1) and ǫ = 2.
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